Gases

Ron Robertson

r2 f:lfilesscourses11110-2012010 posibile slides for weblch 12tran.doc

Gas particles are very far apart -hundreds to thousands of times their own diameters. Thus interactions are usually small and if we neglect them we will not make a large error.

This allows us to "model" the behavior of gases by defining an ideal gas which is often close to a real gas.

1. Ideal gas particles are point masses so the particles occupy no volume themselves.
2. Particles have no attraction for each other.

Gas Laws

Measurement- 4 variables specify the state of a gas -

- Pressure - many units are used (we shall look at this next)
- Volume - m^{3}, liters
- Number of particles - moles
- Temperature - Kelvin (we shall see why soon!)

Pressure = Force/Area

- Units - $\mathrm{lb} / \mathrm{in}^{2}, \mathrm{~N} / \mathrm{m}^{2}=$ Pascal, bar $=10^{5} \mathrm{~Pa}, \mathrm{~mm} \mathrm{Hg}=$ Torr, inches of Hg , Atmospheres
- It is more difficult to measure gas pressure in force/area units. That is why we often measure pressure in terms of what pressure can do - Torr, in Hg
- Manometers are used to measure the pressure of gases and are of 2 types - open and closed. Barometers are specifically designed to measure atmospheric pressure.

2lide

- It is necessary to convert between these units. A convenient way to do this is to memorize the values for standard pressure

$760 . \mathrm{mm} \mathrm{Hg}$	$760 . \mathrm{Torr}$	30.0 in Hg
1.00 Atm	$14.7 \mathrm{lb} / \mathrm{in}^{2}$	$1.013 \times 10^{5} \mathrm{~Pa}$
101.3 kPa	1.013 bar	

Temperature

The Kevin scale is used because it is an absolute temperature scale. This means that it begins at absolute zero - the point at which all translational motion would cease. For an ideal gas this means that volume would be zero since it is composed of point masses. $K={ }^{\circ} \mathrm{C}+273.15$

Standard temperature is defined as $0^{\circ} \mathrm{C}$ or 273.15 K . "STP" represents standard temperature and pressure.
Gases

Slide 4
Gases

Boyle's Law $\quad \mathrm{P} \alpha 1 / \mathrm{V}$ when n and T are constant

Charles' Law V α T when n and P are constant
T must be expressed in Kelvin.

Ideal Gas Law Equation

$$
P V=n R T
$$

The constant R relates the other variables. From both experimental and theoretical work we know that 1 mole of a gas occupies 22.4 I at 273 K and 1.00 atm pressure. This gives a value of 0.0821 Atm - Liters/mole-K or $\mathbf{6 2 . 4} \times 10^{\mathbf{3}}$ Torr-mL/mole-K.

Slide 6
PV = nRT can also be used to obtain a general use equation for changes in a gas.

$$
\frac{P_{1} V_{1}}{P_{2} V_{2}}=\frac{n_{1} T_{1}}{n_{2} T_{2}}
$$

We can also substitute for the (n) in PV = $n R T$.
$n=m / M$ where $m=$ mass in grams and $M=$ molar mass in $\mathrm{g} / \mathrm{mole}$. This gives

$$
P V=\frac{m}{M} R T
$$

(2) Side

Since Density = mass/volume, an expression for density can also be obtained for a gas

$$
D=\frac{P M}{R T}
$$

Particle speeds and Graham's Law

If different gases are at the same temperature, do they have the same average KE? do they have the same average speed?

Since temperature is a measure of KE they have the same average KE but not the same speed. In fact

$$
\frac{v_{1}}{v_{2}}=\sqrt{\frac{M_{2}}{M_{1}}}
$$

where v is velocity (speed) and M is molar mass.
Since distance $=$ velocity \mathbf{x} time we also find that

$$
\frac{{D i s t_{1}}_{D i s t_{2}}^{D}}{=\sqrt{\frac{M_{2}}{M_{1}}} \text { and } \frac{t_{2}}{t_{1}}=\sqrt{\frac{M_{2}}{M_{1}}} \text {. }}
$$

These speeds affect gaseous diffusion (the gradual mixing of gases due to collisions) and effusion (the process by which a gas escapes from a high pressure area to a low pressure area through a small opening). The relative rates of diffusion and effusion are the same for gases and obey the equations above.
Gases
Slide 8

What are the relationships between different gases in a mixture?
total moles $=n_{x}+n_{o}+n_{z}$
total volume $=\mathrm{V}_{\mathrm{x}}=\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{z}}$
Temperature $=T_{x}=T_{o}=T_{z}$
total pressure $=P_{x}+P_{o}+P_{z}$
This last statement is called Dalton's Law of Partial
Pressures. It means that each gas acts independently in the container and exerts its own pressure.

For each component $P_{x}=n_{x} R T / V$
For the total gas $P_{\text {tot }}=n_{\text {tot }} R T / V$
so $\quad P_{x}=($ mole fraction of $X) P_{\text {tot }}$

Stoichiometry

Mass/volume or volume/mass

(1 reactant or product given)
2.02 g of hydrogen react with an excess of oxygen to produce how many liters of water vapor? The water vapor has a pressure of $\mathbf{3 0 0}$. torr and a temperature of 300. K.

Mass/volume or volume/mass (limiting reactant)
(more than one reactant or product given) -
2.02 g of hydrogen react with 8.00 g of oxygen to produce how many liter of water vapor? The water vapor has a pressure of $\mathbf{3 0 0}$. torr and a temperature of $\mathbf{3 0 0}$. K.

Gases
Slide 10

Volume/volume under same conditions

10.0 liters of hydrogen react with 8.00 liters of oxygen to produce how many liters of water vapor at the same T and P ?

Use Avogadro's hypothesis - equal volumes of gases at the same T and P contain equal numbers of molecules. This means that a ratio of volumes is the same as a ratio of moles.

