Oxidation Numbers A short list

Monatomic ions

+1

all the alkali metals show the +1 oxidation state only

Cu ⁺¹	copper (I), cuprous	\mathbf{H}^{+1}	hydrogen	
Au ⁺¹	gold (I)	Li^{+1}	lithium	
Ag^{+1} Tl^{+1}	silver	Na^{+1}	sodium	
Tl^{+1}	thallium (I)	\mathbf{K}^{+1}	potassium	
$\mathrm{Hg_2}^{+2}$	mercury (I), mercurous	$\mathrm{Rb}^{^{+1}}$	rubidium	
		Cs^{+1}	cesium	

+2

all the alkaline earth metals show the +2 *oxidation state only*

	mentite certifi interests site if the		J
Cu ⁺²	copper (II), cupric	Be^{+2}	beryllium
Fe ⁺²	iron (II), ferrous	Ca^{+2}	calcium
Pb ⁺²	lead (II), plumbous	Mg^{+2}	magnesium
Sn ⁺²	tin (II), stannous	Sr^{+2}	strontium
Cr ⁺²	chromium (II)	Ba^{+2}	barium
Ni ⁺²	nickel (II)	Ra^{+2}	radium
Zn ⁺²	zinc	Cd^{+2}	cadmium
Cd ⁺²	cadmium	Hg^{+2}	mercury (II), mercuric
Mn^{+2}	manganese (II)	Co^{+2}	cobalt (II), cobaltous

+3

all the IIIA elements exhibit the +3 state, but Tl exhibits +1 as well

Fe ⁺³ Cr ⁺³ Ni ⁺³ Co ⁺³	iron (III), ferric	\mathbf{B}^{+3}	boron	
Cr ⁺³	chromium (III)	Al^{+3}	aluminum	
Ni ⁺³	nickel (III)	Ga^{+3}	gallium	
Co ⁺³	cobalt (III), cobaltic	In^{+3}	indium	
Au ⁺³ Ti ⁺³	gold (III)	$T1^{+3}$	thallium (III)	
Ti ⁺³	titanium (III)	Sc^{+3}	scandium	

+4

all elements in IVA exhibit the +4 state, but some in IVA exhibit more than one state

C^{+4}	carbon	Sn ⁺⁴	tin (IV), stannic	
Si ⁺⁴	silicon	Pb^{+4}	lead (IV), plumbic	
Ge ⁺⁴	germanium	Ti^{+4}	titanium (ĪV)	
Mn^{+4}	manganese (IV)			

- 1

all the halogens exhibit the -1 state; several exhibit + states in covalent compounds

F ⁻¹	fluoride	I ⁻¹	iodide
Cl ⁻¹	chloride	\mathbf{H}^{-1}	hydride
Br ⁻¹	bromide		·

-2

all the chalcogens exhibit the -2 state for ionic compounds; several exhibit + states in covalent compounds

			Jet tette petter, set tette	
O ⁻²	oxide	Se ⁻²	selenide	
S^{-2}	sulfide	Te ⁻²	telluride	

-3

some of the VA elements exhibit the -3 state for ionic compounds; several exhibit + states in covalent compounds

N ⁻³	nitride
P ⁻³	phosphide

-4

only carbon exhibits the -4 state for a limited number of ionic compounds

C⁻⁴ carbide

Polyatomic ions

+1

the only commonly encountered ion is the ammonium ion

NH₄⁺ ammonium

-1

$(NO_2)^{-1}$	nitrite	$(ClO_4)^{-1}$	perchlorate
$(NO_3)^{-1}$	nitrate	$(ClO_3)^{-1}$	chlorate
$(HSO_4)^{-1}$	hydrogen sulfate, bisulfate	$(ClO_2)^{-1}$	chlorite
$(HCO_3)^{-1}$	hydrogen carbonate, bicarbonate	(ClO) ⁻¹	hypochlorite
$(HSO_3)^{-1}$	hydrogen sulfite, bisulfite	$(IO_3)^{-1}$	iodate
$(MnO_4)^{-1}$	permanganate	$(BrO_3)^{-1}$	bromate
(OH) ⁻¹	hydroxide	$(C_2H_3O_2)^{-1}$	acetate
(CN) ⁻¹	cyanide	$(H_2PO_4)^{-1}$	dihydrogen phosphate

-2

$(SO_4)^{-2}$	sulfate	$(CO_3)^{-2}$	carbonate
$(CrO_4)^{-2}$	chromate	$(SiF_6)^{-2}$	hexafluorosilicate
$(Cr_2O_7)^{-2}$	dichromate	$(C_4H_4O_6)^{-2}$	tartrate
$(C_2O_4)^{-2}$	oxalate	$(HPO_4)^{-2}$	hydrogen phosphate

-3

$(PO_4)^{-3}$	phosphate	$(AsO_4)^{-3}$	arsenate	
$(PO_3)^{-3}$	phosphite			

ACIDS (aq)

H ₂ SO ₄	sulfuric	HNO ₃	nitric
H_2SO_3	sulfurous	HNO_2	nitrous
H_2CO_3	carbonic	$HC_2H_3O_2$	acetic
H_3PO_4	phosphoric	H_3BO_3	boric
H_3PO_3	phosphorous	$H_2C_2O_4$	oxalic
$HClO_4$	perchloric	HC1	hydrochloric
HClO ₃	chloric	HBr	hydrobromic
$HClO_2$	chlorous	HF	hydrofluoric
HClO	hypochlorous	HI	hydroiodic
		HCN	hydrocyanic

H₂SO₄, HClO₄, HClO₃, HNO₃, HCl, HBr, HI can be considered to be strong acids, ionizing completely in most cases; the rest are weak acids.