The Solubility Product Constant

Ron Robertson

What is K_{sp}?

 $K_{sp} = [Ca^{+2}] [F^{-}]^{2}$

Three major things can be done with K_{sp}

- (1) Given the solubility, calculate the K_{sp}
- (2) Given the K_{sp}, calculate the solubility (this includes the possibility of a common ion)
- (3) Decide if and when precipitation of the insoluble substance will start when mixing 2 solutions together

- (1) Calculate the K_{sp} value for bismuth sulfide (Bi₂S₃), which has a solubility of 1.0 x 10⁻¹⁵ mole/L at 25°C. Answer - K_{sp} = 1.1 x 10⁻⁷³
- (2) The K_{sp} value for $Cu(IO_3)_2$ is 1.4 x 10⁻⁷ at 25°C. Calculate its solubility. Answer – 3.3 x 10⁻³ mole/L
- (2) Calculate the solubility of solid CaF_2 ($K_{sp} = 4.0 \times 10^{-11}$) in a 0.025 M NaF solution. Answer – 6.4 x 10^{-8} mole/L
- (3) A solution is prepared by adding 750.0 mL of 4.00 x 10^{-3} M Ce(NO₃)₃ to 300.0 mL of 2.00 x 10^{-2} M KIO₃. Will Ce(IO₃)₃ (K_{sp}= 1.9 x 10^{-10}) precipitate from this solution? Answer yes